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Similarity solutions for the three-dimensional flow and heat transfer of a power-law fluid 
near a stagnation point of an isothermal surface are presented. The results of the numerical 
integrations are given in tables and shown on graphs for some different values of the 
power-law index n, geometric parameter c, and the Prandtl number Pr. Whenever possible, 
these results are compared with available analytical solutions and found to be highly 
accurate. 
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I n t r oduc t i on  

The problem of flow of a Newtonian fluid in the vicinity of a 
three-dimensional (3-D) stagnation point on a regular surface 
has been studied extensively in the literature (Banks 1967; 
Cooke and Robins 1970; Davey 1961; Gersten et al. 1978; 
Ghoshal and Ghoshal 1970; Hayday and Bowlus 1967; 
Howarth 1951; Kumari and Nath 1980; Libby 1976, 1977; 
Nath and Meena 1977; Reshotko 1958; Vimala and Nath 
1975; Wadia 1985; Wortman 1971; Wortman and Mills 1971). 
These investigations were motivated by the basic nature of the 
boundary layer flow at such points, by the exact applicability 
there of similarity solutions, and by their relevance to the 
leading edge and nose regions of bodies in high-speed flight. 
The solution is of immense importance in the design of thermal 
protection systems for launch vehicles, as well as for spacecraft 
reentering planetary atmospheres at hypersonic speeds. There 
should also be mentioned the turbomachinery applications of 
the similarity solutions for the viscous flow in the vicinity of 
an axisymmetric stagnation point on a circular cylinder, with 
an oscillating main stream, see Gorla (1979, 1988a, 1988b). 

The object of this article is to study the flow of an 
incompressible fluid obeying the Ostwald-de-Waele power-law 
model near a 3-D stagnation point of attachment on an 
isothermal regular surface. As pointed out by Gorla (1992a, 
19921)) and Wangskarn et al. (1992), the power-law model is a 
relevant model for non-Newtonian fluids. The values of n used 
in this article represent physical appfications. It is important 
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to note that applications for such systems can be in the molten 
plastics, food, pulp, and paper and petrochemical industries. 
The spirit of the argument is the same as in the article by 
Hayday and Bowlus (1967); that is, the appropriate idealization 
of the flow is assumed to be that near a plane wall, with 
main-stream boundary conditions given by Equation 1, and a 
similarity solution of the inviseid form of the governing 
equations is sought. The derived ordinary differential equations 
are solved numerically for a wide range of three arbitrary 
parameters. Comparisons with other available solutions show 
excellent agreement. 

Governing equa t ions  

Consider a steady 3-D flow of an incompressible fluid obeying 
the power-law model in the vicinity of a stagnation point on 
a regular surface, which is held at a constant temperature T,, 
while the main-stream flow has the temperature T=(< Tw). A 
coordinate system (x, y, z) is introduced with the stagnation 
point in question at (0, 0, 0). The coordinate normal to the body 
is z, and x and y are in the directions of the two principal 
curvatures. In this coordinate system, the velocity of the main 
stream flow has components 

U = ax, V = by, W = - ( a  + b)z (1) 

for some constants a and b. The signs and relative magnitude 
of a and b determine the nature of the stagnation point. In this 
article, we speak of a point of attachment if the normal 
component of the main stream velocity is directed toward the 
wall, that is, if (a + b) > 0. In the opposite case we speak of a 
point of separation. If a and b have the same sign, the 
stagnation point is termed a nodal point; otherwise it is a 
saddle point. 
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We assume that the following transport properties apply for 
the power-law viscosity model (Gryglaszewski and Saljnikov 
1989; Pop and Gorla 1990, 1991; Shvets and Vishnevskiy 1987). 

¢0 = --P6u + K]½12 [("- 1)/2e U (2) 

q = -k]½lzl" grad T (3) 

The boundary layer equations expressing the principles of 
conservation of mass, momentum, and energy in the vicinity of 
the stagnation point are 

du do Ow 
c~~ + ~yy + ~ z  -- 0 (4) 

Ou Ou Ou aU v ~ U  K d ( du"-l du~ 
- -  - - + w - - = U - - +  - -  u ~y + v ~y Oz ~x ~y +-~ ~z_ Tz Tz/ (5) 

c~v dv w--=Ov c~V v d V  g p flauln-' av I 
u T~ + Oz ~x Ty + -~ T, ~, Tz Tz v ~y + U - -  + . (6) 

=._0  l l.o, ) 
u Ox + v Oy OzklOzl ~z 

where (u, v, w) are the velocity components along (x, y, z)- 
directions, p is the density, and a is the thermal diffusivity of 
the fluid. The boundary conditions of Equations 4 to 7 are 

u(x, y, O) = v(x, y, O) = w(x, y, O) = 0 (8a) 

T(x, y, O) = Tw (8b) 

u(x, y, oo) = U, v(x, y, oo) = V, T(x, y, oo) = T= (8c) 

It can be easily shown that the above system consisting of 
Equations 4 to 7 subject to the boundary conditions (Equation 
8) admits similarity solutions only if S = n - 1. In this article, 
we have not considered other values of S. We now present a 
compatible representation for u, v, w, and T in the following 
manner: 

u = axf'(~l), v = bye'O/) (9a) 

/ 'a2- "~-1 / (1+") / '  2n 1 - n , 
w :  - a l - E - ~ }  ~-~-~-~n f + ~ + n ~  + c g / x  " - ' ) ' ' R + ' '  

(9b) 

0(,0 = ( T -  T®)/(T,,- T®) (9c) 

w h e r e  

/ a  2 - n \  I/(R+ t) 
= z( = - - - - |  x " - n ) / "  +,) (10) 

\ g/p ] 

is a similarity variable, and prime denotes differentiation with 
respect to 7. We mention at this point that n = 1 represents a 
Newtonian fluid, and n < 1 and n > 1 correspond to the eases 
of pseudoplastic and dilatant fluids, respectively. 

Using the transformation defined by Equations 9 and 10, 
Equations 4 to 7 become 

(2 I ) 
([f"l"-Xf")' + \ n  + 1 + cg f "  = (f,)2 _ 1 (11) 

(If"l"-lg")'  + \ ~ - 1 +  1 + co g" = c[(g') 2 -- 1] (12) 

l ( I f " l ' - tO ' ) '  ( 2n ) + ~ -+-~ f+cg  0 ' = 0  (13) 

The problem is completely posed by adding the boundary 
conditions 

f ( 0 )  = f ' ( 0 )  = 0(0) = g'(0) = 0,  0(0) = 1 (14a) 

f '(oo) -- 1, g'(oo) = 1, 0(oo) = 0 (14b) 

In the preceding equations Pr = K/(p=) is the Prandtl number, 
and c = b/a is a geometric parameter. It is important to note 
that for c = 1, then f = g. Equations 11 to 13 describe the flow 
of a power-law fluid near a stagnation point on a body of 
revolution. Then c = 0 corresponds to the two-dimensional 
flow. The dimensionless wall skin friction coefficients Cfz and 
Cry as well as the Nusselt number Nu may be written as 

CfxRe 11("+1) 
= If"(o)l"-~f"(o) (15) 

2 

CfyRe~/("+1) 
= If"(0)l"-'a"(0) (16) 

2 

Nu Re~/t"+ 1) = _ ] f"(0)["- 10'(0) (17) 

where Rex = (ax) 2 -" x"/(K/p) is a local Reynolds number based 
on the main-stream velocity U. 

N o t a t i o n  

a, b Constants 
c Geometric parameter 
Cf,, Cf, Skin friction coefficients 
etg Strain rate tensor 
f, g Similarity functions 
12 Second invariant of the strain rate tensor 
k Thermal conductivity 
K Consistency index 
n Fluid power-law index 
Nu Nusselt number 
p Pressure 
Pr Prandtl number 
q Heat flux 
Re, Local Reynolds number 
s Heat-transfer power-law index 
T Temperature 
u, v, w Velocity components in the boundary layer 

along (x, y, z)-directions 

U,V,W 

x, y, z 

Velocity component in the main stream 
along (x,  y ,  z)-directions 
Local orthogonal co-ordinate system 

Greek symbols 
~, Thermal diffusivity 
6ij Unit tensor 
~/ Similarity variable 
0 Nondimensional temperature 
p Density 
zij Stress tensor 

Subscripts 
w Refers to surface values 
oo Refers to values in the main stream 

Superscript 
Differential with r~pect to tt 
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R e s u l t s  a n d  d i s c u s s i o n  2.0- 
Equations 11 to 13 with the boundary conditions (Equation , 8  
14) constitute a nonlinear system of ordinary differential 
equations with three arbitrary parameters and define a difficult tN 
nonlinear two-point boundary value problem. We have not ~- ,.6. 
been able to find an exact analytical solution of this system. =; 
Hence, we solved these equations numerically. The asymptotic 
boundary conditions are satisfied at the edge of the boundary d " 
layer by adjusting the initial conditions so that the mean square 
error between the computed variables and the asymptotic 12. 
values is minimized. Convergence to a solution is rapid and 
appears to be somewhat insensitive to the first guesses of the 
initial conditions. Converged numerical solutions were 
obtained for several values of the power-law index n and 
geometric parameter c in the ranges 0.5 < n < 2.0 and 
0 < c < 1. The Prandtl number Pr has been taken 10 and 100, Figure I 
respectively. 

Table 1 presents numerical values for fi 'o, g'~), and ~o for 
. ). ( 2o0 

a range of values for n, c, and Pr. Using this tabulated ~ata, 
one may easily compute C~, Cry and Nu. To confirm the 175 
accuracy of our numerical procedure, we have compared our 
data for n = 1 (Newtonian fluid) with those reported by ,5o 
Hayday and Bowlus (1967); as expected, we find that our results 
are in excellent agreement with the literature data. For example, ~ ,25. 
for n = 1, c = 1, and Pr = 10, our results for fi'o), Of'o), and ~ ,o0 
-0~o) are 1.314718, 1.314718, and 1.750868, whereas the values o 
reported by Heyday and Bowlus (1967) are 1.315, 1.315, and 
1.75, respectively, o.75- 

Figures 1 and 2 display results for the friction factors Cr~ and 
0 . 5 0  - Cfy v e r s u s  the geometric number c with n as a parameter. It is 

observed that the friction factor increases with c as well as n. o2~ 
Figures 3 and 4 show the resdts for the heat-transfer rate versus go 

c for n ranging from 0.5 to 2.0. We observe that the Nusselt 
number increases with c as well as n. Tables 2 to 5 present 
numerical results of Cf,, Cry and Nu for several values of the 

1.o 

09 

c 

Cfx versus c 

n=2.0 

~ = 1 . 5  

~ = 1 . 0  

, = 0 . 8  

~ = 0 . 5  

~ r~=2.0 

~ ~ ~ I1=1.5  

n=1.0 
j J ~  . ......... "'~il ,=o.s ~ = 0 . 5  

oi, o12 o13 oi, ols o~ o17 o18 oi, ,o 

Figure 2 C~ versus c 

T a b l e  1 
and n 

Values of f ' (O), g"(O) and 9'(0) for various values of c 

n c f " (0)  g"(0) 0'(0) 0'(0) 
Pr = 10 Pr = 100 

0.5 0.00 1.059503 0.338657 - 0 . 9 1 2 1 3 5  - 2 . 3 1 8 2 0 6  
0.26 1.072028 0.579341 - 1 . 0 0 9 8 2 3  - 2 . 5 0 9 9 5 8  
0.50 1.090248 0.789032 - 1.137215 - 2 . 7 7 8 6 4 2  
0.75 1.112155 0.973931 - 1.274107 - 3 . 0 7 5 5 0 8  
1.00  1 . 1 3 6 4 5 3  1 . 1 3 6 4 5 3  - 1.411911 - 3.378229 

0.8 0.00 1.176826 0.456216 - 1.204040 - 2 . 7 9 1 0 2 9  
0.25 1.190752 0.711423 - 1.293850 - 2.971160 
0.50 1.209737 0.920305 - 1.407481 - 3 . 2 1 1 2 5 0  
0.75 1.231693 1.098936 - 1.528623 - 3 . 4 7 2 8 1 3  
1.00 1.255475 1.256475 - 1 . 6 4 9 5 2 6  - 3 . 7 3 8 8 0 6  

1.0 0.00 1.232591 0.577523 - 1.338799 - 2 . 9 8 6 3 3 7  
0.25 1.247174 0.802362 - 1.425879 - 3.163442 
0.50 1.265891 1.01 3584 - 1.530611 - 3.386156 
0.75 1.287053 1.171969 - 1.640686 - 3 . 6 2 5 4 6 0  
1.00  1 , 3 1 4 7 1 8  1 . 3 1 4 7 1 8  - 1 . 7 5 0 8 6 8  - 3 . 8 6 7 8 9 8  

1.5 0.00 1319107  0.824933 - 1 . 5 3 6 6 2 2  - 3 . 2 2 5 9 5 5  
0.25 1,332718 0.985889 - 1.616217 - 3 . 3 9 2 0 8 9  
0,50 1 348810  1.131860 - 1.728217 - 3.578016 
0,75 1.366772 1.26421 5 - 1 390287  -3 .870251  
1.00 1386066  1386066  -1.877603 -4.024238 

2.0 0,00 1.356015 0.962891 - 1.618329 - 3 . 2 7 3 7 0 4  
0.25 1.367773 1.088000 - 1 . 6 8 9 6 2 3  - 3 . 4 2 4 7 9 9  
0.50 1.381253 1.204114 - 1.762705 - 3.584469 
0.75 1 396222  1.311475 - 1.835472 - 3.748359 
1,00  1.41 2457 1.412457 - 1.906609 - 3.906501 

parameters n, c, and Pr. We see from these tables that for n = 1 
(Newtonian fluid), the present results are in excellent agreement 
with the analytical solutions reported by Hayday and Bowlus 
(1967). 

From the numerical results, it was observed that as c 
increases, the velocity distribution in the boundary layer 
becomes more uniform. As the value of n increases we observe 
that the velocity distribution tends to a more linear shape. The 
results for pseudoplastic fluids (n < 1) and dilatant fluids 
(n > 1) have not been reported in the literature so far. As the 
geometric parameter c decreases, the thermal boundary layer 
thickness increases, and the temperature distribution becomes 

275  

2 5 0  - 

2 2 5  - 

2 0 0  - 
÷ 

M 7 5 -  

Z 1 5 0  - 

1 2 5 -  

I O0 - 

0 750,0 0!I 

~ J  

P r = l O  ~ ~ ~ 

. . . . . . . .  
. . . .  _ . . . - - - - - ' - '  

0 2  0 3  0 4  0 6  07 0 8  0 9  1.0 

Figure 3 Nusselt number versus c for Pr = 10 

~ = 2 . 0  

~ = t . 5  

"~=1.0 

n=O,8 

n = 0 . 5  
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4 -  

?= 

Pr= 100 

. . - - -  

2 

Nusselt number versus c for Pr = 100 Figure 4 

~=2.0 

Tab le  fi Variation of  NuRex 1/(n+1) with n and c for Pr = 100 

n c = 0.00 c = 0.25 c = 0,50 c = 0.75 c = 1.00 

Tab le  2 Variation of  CfxRelx/(n+1)/2 with n and c 

n c = 0.00 c -- 0.25 c = 0.50 c = 0.75 c -- 1.00 

0.5 1.029322 1.035388 1.044149 1.054688 1.066046 
0.8 1.139121 1.149892 1.164536 1.181414 1.199628 
1.0 1.232591 1.247174 1.265891 1.287053 1.314718 
1.0" 1.227 1.245 1.265 1.289 1.315 
1.5 1.515026 1.538535 1.566485 1.597880 1.631834 
2.0 1.838777 1.870880 1.907860 1.949436 1.995035 

• from Hayday and Boulos (1967) 

Tab le  3 Variation of  C~Re~x/(n+l)/2 with n and c 

n c = 0.00 c = 0.25 c = 0.50 c = 0.75 c = 1.00 

0.5 0.329010 0.559540 0.755669 0.952736 1.069750 
0.8 0.441599 0.687011 0.885917 1.054073 1,201218 
1,0 0.577523 0.823621 1.013584 1.171969 1.314718 
1.0" 0.585 0.838 1.014 1~172 1,315 
1.5 0.947455 1,138144 1.314523 1.477981 1.630223 
2.0 1.305695 1.488137 1.663186 1.831101 1.992371 

• from Hayday and Boulos (1967) 

Tab le  4 Variation of  NuReC~/(n+l) with n and c for Pr = 10 

n c -- 0.00 c = 0.25 c = 0.50 c = 0.75 c = 1.00 

0.5 0.886152 0.975309 1.089130 1.208157 1.324437 
0.8 1.165463 1.249453 1.354890 1.465875 1.576150 
1.0 1.338800 1.425879 1.530611 1.640685 1.750868 
1.0 ° 1.338792 1.427893 1.531235 1.641714 1.762036 
1.5 1.764847 1.865816 2.007122 2.093010 2.210526 
2.0 2.194478 2.311021 2.434742 2.562726 2.693003 

• from Hayday and Boulos (1967) 

more uniform. The thermal boundary layer thickness decreases 
as n increases. 

Conclus ion 

In this article, we have presented similarity solutions for the 
momentum and energy equations governing a general 3-D flow 
of an incompressible power-law type of non-Newtonian fluid 

~=~.5 0.5 2.252170 2.424173 2.661153 2.916314 3.168934 
0.8 2.701604 2.869208 3.091262 3.331 042 3.572493 
1,0 2.986337 3.163442 3.386156 3.625460 3.867898 

~=1.o 1.0" 2.986456 3.166771 3.387231 3.627456 3.870705 
~=o.8 1.5 3.705088 3.915943 4.155447 4.524672 4.737788 
~=o.s 2.0 4.439192 4.684348 4.951059 5.230750 5.517765 

• from Hayday and Boulos (1967) 

near a stagnation point. Results for the local friction factor and 
Nusselt number are presented for isothermal boundary 
conditions. The friction factor as well as heat-transfer rate 
increase with the geometric parameter c. Pseudoplastic fluids 
display less surface friction and heat-transfer rate when 
compared with dilatant fluids. Numerical results for the 
velocity and temperature distribution within the boundary 
layer are presented. The range of the flow behavior index n was 
from 0.5 to 2.0, whereas the geometric parameter c was allowed 
to vary from 0 to 1. The Prandtl number was assumed to be 10 
and 100. 
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